106 research outputs found

    A uniform reconstruction formula in integral geometry

    Full text link
    A general method for analytic inversion in integral geometry is proposed. All classical and some new reconstruction formulas of Radon-John type are obtained by this method. No harmonic analysis and PDE is used

    Thermoacoustic tomography with detectors on an open curve: an efficient reconstruction algorithm

    Full text link
    Practical applications of thermoacoustic tomography require numerical inversion of the spherical mean Radon transform with the centers of integration spheres occupying an open surface. Solution of this problem is needed (both in 2-D and 3-D) because frequently the region of interest cannot be completely surrounded by the detectors, as it happens, for example, in breast imaging. We present an efficient numerical algorithm for solving this problem in 2-D (similar methods are applicable in the 3-D case). Our method is based on the numerical approximation of plane waves by certain single layer potentials related to the acquisition geometry. After the densities of these potentials have been precomputed, each subsequent image reconstruction has the complexity of the regular filtration backprojection algorithm for the classical Radon transform. The peformance of the method is demonstrated in several numerical examples: one can see that the algorithm produces very accurate reconstructions if the data are accurate and sufficiently well sampled, on the other hand, it is sufficiently stable with respect to noise in the data

    Rarita-Schwinger Type Operators on Spheres and Real Projective Space

    Get PDF
    In this paper we deal with Rarita-Schwinger type operators on spheres and real projective space. First we define the spherical Rarita-Schwinger type operators and construct their fundamental solutions. Then we establish that the projection operators appearing in the spherical Rarita-Schwinger type operators and the spherical Rarita-Schwinger type equations are conformally invariant under the Cayley transformation. Further, we obtain some basic integral formulas related to the spherical Rarita-Schwinger type operators. Second, we define the Rarita-Schwinger type operators on the real projective space and construct their kernels and Cauchy integral formulas.Comment: 21 pages. arXiv admin note: text overlap with arXiv:1106.358

    Initial-boundary value problems for discrete evolution equations: discrete linear Schrodinger and integrable discrete nonlinear Schrodinger equations

    Full text link
    We present a method to solve initial-boundary value problems for linear and integrable nonlinear differential-difference evolution equations. The method is the discrete version of the one developed by A. S. Fokas to solve initial-boundary value problems for linear and integrable nonlinear partial differential equations via an extension of the inverse scattering transform. The method takes advantage of the Lax pair formulation for both linear and nonlinear equations, and is based on the simultaneous spectral analysis of both parts of the Lax pair. A key role is also played by the global algebraic relation that couples all known and unknown boundary values. Even though additional technical complications arise in discrete problems compared to continuum ones, we show that a similar approach can also solve initial-boundary value problems for linear and integrable nonlinear differential-difference equations. We demonstrate the method by solving initial-boundary value problems for the discrete analogue of both the linear and the nonlinear Schrodinger equations, comparing the solution to those of the corresponding continuum problems. In the linear case we also explicitly discuss Robin-type boundary conditions not solvable by Fourier series. In the nonlinear case we also identify the linearizable boundary conditions, we discuss the elimination of the unknown boundary datum, we obtain explicitly the linear and continuum limit of the solution, and we write down the soliton solutions.Comment: 41 pages, 3 figures, to appear in Inverse Problem

    The photometric properties of a vast stellar substructure in the outskirts of M33

    Full text link
    We have surveyed 40\sim40sq.degrees surrounding M33 with CFHT MegaCam in the g and i filters, as part of the Pan-Andromeda Archaeological Survey. Our observations are deep enough to resolve the top 4mags of the red giant branch population in this galaxy. We have previously shown that the disk of M33 is surrounded by a large, irregular, low-surface brightness substructure. Here, we quantify the stellar populations and structure of this feature using the PAndAS data. We show that the stellar populations of this feature are consistent with an old population with <[Fe/H]>1.6<[Fe/H]>\sim-1.6dex and an interquartile range in metallicity of 0.5\sim0.5dex. We construct a surface brightness map of M33 that traces this feature to μV33\mu_V\simeq33mags\,arcsec2^{-2}. At these low surface brightness levels, the structure extends to projected radii of 40\sim40kpc from the center of M33 in both the north-west and south-east quadrants of the galaxy. Overall, the structure has an "S-shaped" appearance that broadly aligns with the orientation of the HI disk warp. We calculate a lower limit to the integrated luminosity of the structure of 12.7±0.5-12.7\pm0.5mags, comparable to a bright dwarf galaxy such as Fornax or AndII and slightly less than $1\$ of the total luminosity of M33. Further, we show that there is tentative evidence for a distortion in the distribution of young stars near the edge of the HI disk that occurs at similar azimuth to the warp in HI. The data also hint at a low-level, extended stellar component at larger radius that may be a M33 halo component. We revisit studies of M33 and its stellar populations in light of these new results, and we discuss possible formation scenarios for the vast stellar structure. Our favored model is that of the tidal disruption of M33 in its orbit around M31.Comment: Accepted for publication in ApJ. 17 figures. ApJ preprint forma

    Two classes of generalized functions used in nonlocal field theory

    Full text link
    We elucidate the relation between the two ways of formulating causality in nonlocal quantum field theory: using analytic test functions belonging to the space S0S^0 (which is the Fourier transform of the Schwartz space D\mathcal D) and using test functions in the Gelfand-Shilov spaces Sα0S^0_\alpha. We prove that every functional defined on S0S^0 has the same carrier cones as its restrictions to the smaller spaces Sα0S^0_\alpha. As an application of this result, we derive a Paley-Wiener-Schwartz-type theorem for arbitrarily singular generalized functions of tempered growth and obtain the corresponding extension of Vladimirov's algebra of functions holomorphic on a tubular domain.Comment: AMS-LaTeX, 12 pages, no figure

    2.11. Necessary conditions for interpolation by entire functions

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41580/1/10958_2005_Article_BF01221572.pd

    Uniqueness of reconstruction and an inversion procedure for thermoacoustic and photoacoustic tomography

    Full text link
    The paper contains a simple approach to reconstruction in Thermoacoustic and Photoacoustic Tomography. The technique works for any geometry of point detectors placement and for variable sound speed satisfying a non-trapping condition. A uniqueness of reconstruction result is also obtained
    corecore